異材管継手の残留応力評価手法の検討

Estimation of Residual Stress Distribution of Alloy600/SUS304 Dissimilar Weld Joint

佐々木 亨 (Tohru Sasaki)* 山口 敬介 (Keisuke Yamaguchi)*

要約 本研究では,原子力発電所で使用される異材溶接継手Alloy600(インコネル600)/SUS304の溶接部位近傍に発生する残留応力の評価を行うために,体系を単純化した配管周継手を対象にして2次元軸対称有限要素解析結果と非破壊的な手法であるX線回折法及びひずみゲージ法による測定結果を比較検討した.

解析では,モデル化における溶接変形の考慮の影響,溶接入熱条件のモデル化の影響を弾塑性 解析により把握した.その結果,形状のモデル化,入熱条件のモデル化ともに温度履歴に及ぼす 影響は有意であったが,残留応力にあまり影響を与えないことがわかった.

測定では非破壊的手法であるX線回折法による応力測定により,軸方向残留応力については 50MPa程度の精度で解析値と測定値が一致した.

これらの結果から,解析ならびに測定共に軸方向残留応力の予測が十分可能であることが確認 でき,溶接部近傍の評価ができる見通しを得た.

キーワード SUS304, ALLOY600, 残留応力, 溶接継手, 有限要素法, 非破壊測定, X線回折

Abstract This paper describes the estimation of residual stress distribution of Alloy 600/SUS304 dissimilar weld joint in the nuclear power plant piping. The calculated results by twodimensional axi-symmetric FEM modeling were compared with the measurements by non-destructive methods of the X-Ray diffraction and strain gauge procedures.

In the thermal elasto-plastic analysis, two factors were considered. One is the geometric modeling of weld deformation and another is the modeling of heat flux in welding. Though thermal histories were affected by the modeling of weld deformation and heat flux, estimation of residual stress was robust to the modeling. Applicability of X-Ray diffraction method is also confirmed to measure axial residual stress at the surface of the welded piping, because the scatter between measured and calculated results were less than 50MPa.

It was confirmed that the axial residual stress distribution near the weld joint of Alloy600/SUS304 piping is estimated by FEM analysis and X-Ray diffaction method within acceptable accuracy.

Key Words SUS304, Alloy600, residual stress, weld joint, FEM, X-ray diffraction, non-destructive method.

1. はじめに

原子力発電所において健全性に問題を及ぼすき裂 の大部分は溶接部近傍にて発生し,溶接部の残留応 力はき裂の発生に影響を与える.

従来は,実機と同じ条件のモデル溶接を実施し, 計測で得られる表面の残留応力と簡易的な解析から 応力分布を推定してきた.有限要素解析による溶接 部の応力分布の推定においては,凝固履歴,相変化 を伴う物性の変化,さらに再溶融による応力緩和の 挙動を考慮した構成式の適用など多大な課題を含ん でいる.また,溶接により変形した断面形状を有限 要素でモデル化する上で非破壊的に予測することは 難しく,残留応力を精度良く推定することは困難で ある.計測においても,表面における加工履歴を強 く受けるので,残留応力を精度良く測定することは

^{*(}株)原子力安全システム研究所 技術システム研究所

困難である.

従来の研究においては,予測と計測が合った最終 結果のみが報告され,どのパラメータが重要なのか, もしくは効かないのかについて報告された例はほと んどない.

本研究では,異材溶接継手Alloy600(インコネル 600)/SUS304の溶接部位近傍に発生する残留応力 の評価を行うために,体系を単純化した配管周継手 を対象にして2次元軸対称有限要素解析とX線回折 等の非破壊的測定を実施する.

モデル化における溶接変形の考慮の影響,溶接入 熱条件のモデル化の影響を弾塑性解析により把握す る.計測においては,X線法とひずみゲージ法によ る残留応力の比較,複数のモデル化の解析との比較 により双方の信頼性を向上させる.また,これまで 異材継手の残留応力と解析との比較例がほとんど無 かったので,同材継手との違い,予測精度等を確認 する.

2. モデル溶接

2.1 残留応力試験体の製作

モデルは,SUS304の同材配管周方向突合せ周継 手ならびにSUS304とインコネル(以下,Alloy600 と称す)600の異材配管周方向突合せ周継手とした. 配管の寸法は,SUS304が直径101.5mm,板厚 5.75mm,長さ300mm,Alloy600が直径101.4mm,板 厚6.93mm,長さ300mmとした.

溶接材料は同材継手については神戸製鋼製TGS 308,異材継手については日本ウェルディング・ロッド製 WEL AUTO TIG 625とした.

溶接方法は自動GTA溶接とした.配管同士を3箇 所仮付け後,片側の配管を専用治具で固定し,管を 一定の速度で回転させながら溶接を行った.また, 積層数は8層とし,パルス電流を用いた.

モデル溶接試験体の開先形状及び寸法を図2.1-1 に示す.また,溶接後の同材溶接部及び異材溶接部 の断面形状を図2.1-2にそれぞれ示す.

図 2.1-1 開先形状及び断面形状

図 2.1-2(1/2) 溶接後の断面形状(同材継手)

図 2.1-2(2/2) 溶接後の断面形状(異材継手)

2.2 温度計測

図2.2-1にモデル溶接中の温度計測位置を示す. 本図において,配管のシーム溶接部が90°位置とな り本溶接が時計回りに進行するよう周方向の位置 (角度)を定義した.そして,管外面の0°および 180°位置において,開先端部から10mm離れた位 置および50mm離れた位置に熱電対を取り付け,溶 接時の温度変化を計測した(計3箇所).

図 2.2-1 モデル溶接時の温度計測位置

図2.2-2に同材継手の8層目溶接中の温度計測結果を 示す.図2.2-1の計測位置では最大で400~500 の 温度上昇が生じている.図2.2-3には異材継手の温 度計測結果を示す(SUS304側で計測).こちらも, 最大で400~500 の温度上昇が生じており,同材継 手の場合とほぼ同じ傾向であった.

図2.2-2 溶接中の温度計測結果(8層目:同材)

図2.2-3 溶接中の温度計測結果(8層目:異材)

2.3 熱伝導解析

溶接断面形状を有限要素でモデル化する上で非破 壊的に予測することは困難である.そこで,形状モ デルとしては,簡易的にモデル化した溶接前の形状 に基づく「予測モデル」と詳細にモデル化した溶接後 の形状に基づく「シミュレーションモデル」を用い, 両者を比較した.

図2.3-1にSUS×SUS同材継手ならびにSUS× Alloy600異材継手に対する予測モデルの要素分割図 を示す.図2.3-2にSUS×SUS同材継手ならびに SUS×Alloy600異材継手に対するにシミュレーショ ンモデルの要素分割図を示す.解析コードとしては, 汎用FEM解析プログラムABAQUS ver.5.8を用いた.

熱伝導率,比熱,比重量の基本特性はASMEより 引用し,いずれの物性値も温度依存を考慮した.

解析パラメータは,形状モデル,配管内面の熱伝 達係数,溶接金属とその近傍の発熱量の割合,等価 発熱時間ならびに層間温度である.解析パラメータ を表2.3-1に示す.

溶接金属 溶接金属近傍 層間 配管内面 ケース 継手 形状モデル 熱伝達 入熱 等価 入熱 等価 温度 No. 割合 時間 割合 時間 1 同材 予測 2 異材 100 3 同材 対流 100% 0% 4 異材 10**秒** 5 6 25 シミュレー 7 同材 ション 8 断熱 10秒 70% 30% 9 1秒 100 10異材

表 2.3-1 解析パラメータ一覧

図2.3-3 CASE7~10の溶接部近傍境界条件

SUS×SUS同材継手について,8パス目入熱終了 後の温度分布をケース1,ケース3ならびにケース9 を比較して図2.3-4に示す.溶接金属のみを発熱さ せたケース1と3については,最高温度位置はほぼ 同じであるが,溶接金属とその近傍を発熱させたケ ース9とは異なる結果となった.また,最高温度は3 ケースで異なる結果となった.

図2.3-4 PASS08溶接直後の温度分布図(同材継手)

SUS × Alloy600異材継手について,8パス目入熱 終了後の温度分布をケース2,ケース4ならびにケー ス10を比較して図2.3-5に示す.分布,値共に,同 材継手との顕著な差は見られなかった.

3. 残留応力の評価

3.1 **残留応力の測定**

モデル溶接により生じた残留応力の測定には,非 破壊的手法であるX線回折法と破壊的手法であるひ ずみゲージ法を用いた.

3.1.1 X線残留応力測定手法

X線を用いた残留応力の測定は,Braggの回折条件(式(1))を満足する回折強度プロファイルのピーク角の変化が負荷応力に依存することを利用する ものである.

2dsin()=n (n:整数)・・・・(1) ここで,dは原子面間距離, は回折角, はX 線の波長である.一般に,無応力状態におけるdを d_oとすれば,ある負荷状態で得られるdを用いて, そのときのひずみ (弾性ひずみ)は,

$$\varepsilon = \frac{d - d_0}{d_0} \quad \cdots \quad \cdots \quad (2)$$

となる.これを応力に換算するのがX線法による応力計測の原理である.なお,計測された応力値は, 供試体の表面の応力値であることに留意が必要である.表3.1-1にX線応力測定条件を示す.

衣3.1-1 入脉心力測正余作	Ŧ
-----------------	---

	SUS304	Alloy600	
X線応力計測装置	PSF-2M(rigaku製)		
特性X線及び管球条件	CrK (Vフィルタ使用せず)10 mA 30 kV		
照射面積	4×4mm(マスキング)		
摇動角	±3°		
ヤング率	195 GPa	205 GPa	
回折角	148.5 °	153.1 °	
ピーク角決定法	半価幅法		
表層電解研磨	50 µ m		

3.1.2 ひずみゲージ残留応力測定手法

ひずみゲージ法は供試体を切断により解放される 弾性ひずみをひずみゲージにより計測し,残留応力 値に換算する手法である.応力の算定に当たっては 平面応力状態を仮定し,式 , に示す応力算定式 (直交するx,y方向の切断前後のひずみ変化: ",

,)を用いた.

$$\sigma_x = \frac{E}{1 - v^2} (\Delta \varepsilon_x + v \Delta \varepsilon_y) \quad \cdots \quad (3)$$

$$\sigma_{y} = \frac{E}{1 - v^{2}} (\Delta \varepsilon_{y} + v \Delta \varepsilon_{x}) \cdot \cdot \cdot (4)$$

表3.1-2 ひずみゲージ応力測定条件

使用ゲージ	東京測器製FCA-2-17 GL=2mm , 2軸	
計測方向	周方向,軸方向	
切出し寸法	12 × 12 × 3 (mm)	

ここでは,供試体に初期から存在する残留応力の 分布形状にもよるが,切断領域の大きさや形状等に よって得られる値が変化する場合があることに留意 が必要である.基礎実験では,板厚の1/3~半分程 度にスライスすることによって深さ方向のひずみが 概ね開放されることを確かめている.

3.1.3 応力計測位置

図3.1-1に残留応力の計測位置を示す.管外面の 45°および225°の位置において,溶接止端部から 5mm,10mm,20mm,50mm離れた点および管端か ら10mm離れた点(素材の残留応力計測が目的)を 計測対象とした(計20箇所,40方向).

3.1.4 素材の残留応力の計測

溶接前の素材が製造時から有する残留応力レベル を把握することは重要である.そこで,供試材料の SUS304管を用いて素材の残留応力を計測した.

(1) X線法による素材内部の残留応力計測

図3.1-2に,素材(SUS304管)の外表面からの板 厚方向の深さとX線法により計測した残留応力の関 係を示す.軸方向ならびに周方向とも,測定位置と 深さ方向に対してほぼ一致しており,応力勾配はな いことがわかる.

(2)ひずみゲージ法による素材内外面の残留応力
 図3.1-3に,ひずみゲージ法による素材(SUS304
 管)の外面および内面の残留応力計測結果を示す.
 本図中,SUS素材A,SUS素材Bが素材の状態で計測した結果である.また,同材継手と異材継手の管

端から10mmの位置における残留応力値を示す(表記は同材継手がSUS,SUS,SUS,異材継手がSUS). それぞれ,管の45°位置および225°位置での計測 結果を示す.周方向,軸方向ともに,内面は外面に 比べて圧縮方向の残留応力である.特に,周方向で その傾向が大きい.

(b) 周方向応力 図3.1-3 ひずみゲージ法によるSUS304管素材の 内外面の残留応力

3.1.5 残留応力計測結果

初期残留応力測定結果より周方向の位置に依らず,温度条件もほぼ変わらないと考えられることから45°のデータで整理した.なお,225°でも同様の結果が得られている.

45°位置において,X線法による計測結果とひず みゲージ法による計測結果を合わせたものを図3.1-4(同材継手)および図3.1-5(異材継手)に示す. 測定手法に依らず両者は全体的に良く一致した.また,同材継手で得られた溶接残留応力の分布形状は 一般の配管溶接にみられるものとも一致しており, 今回の計測手法であるX線法,ひずみゲージ法とも 妥当であると考えられる.

同材継手の軸方向計測結果において,ひずみゲー ジ法の残留応力値がX線法に比べて圧縮側となる理 由として,溶接による角変形が考えられる.一般に, 管の突合せ溶接において,軸方向残留応力は溶接に よる角変形の影響で管の内面と外面で応力値の正負 (引張/圧縮)が反転する場合(すなわち,板厚方 向に大きな応力勾配を生じる)がある.今回の計測 はX線法,ひずみゲージ法ともに管の外面で計測を 実施したが,表3.1-3に示すように,それぞれの計 測法は得られる残留応力値に特徴を有している、特 に板厚方向の得られる残留応力値には大きな差があ リ,溶接部から少し離れた箇所の管外面では本来, (X線法による結果のように)引張残留応力となる ものが,ひずみゲージ法ではやや圧縮側の値になっ たと考えられる、同様の傾向が異材継手の軸方向残 留応力計測結果にもみられる.

	周方向および軸方向	板厚方向 ^{")}
X線法	照射面積(4×4mm) 内の平均値	表面での値
ひずみ ゲージ法	切出寸法(12×12mm) 内の平均値	表面~3mm 深さまでの平均値

表3.1-3 今回の計測法で得られる残留応力値

*) 供試体の板厚は6~7mm

また,異材継手において,Alloy600側の周方向残 留応力が(X線法,ひずみゲージ法とも)圧縮とな っている.これは,異材継手のSUS304側や同材継 手とは異なる傾向である.この原因として, SUS304とAlloy600の線膨張係数の差が考えられる. 線膨張係数はSUS304の方が大きいので異材継手で は,突合せ溶接後のSUS304側の熱収縮量がAlloy600 に比べて大きくなり,結果としてAlloy600に圧縮の 残留応力が負荷されたと考えられる.

(b) 周方向応力
図3.1-4 管外面残留応力計測結果(同材継手)

3.2 残留応力の解析

3.2.1 解析方法

溶接部のモデルとしては,図2.3-1に示した溶接 前の形状に基づく「予測モデル」と図2.3-2に示した 溶接後の形状に基づく「シミュレーションモデル」を 用いた.解析コードとしては,汎用FEM解析プロ グラムABAQUS ver.5.8を用いた.

SUS304×SUS304の場合は母材,溶接金属ともに 同じ物性値を用いた.SUS304×Alloy600の場合, 母材はSUS304とAlloy600,溶接金属,はAlloy625の 物性値を用いた.

ヤング率,ポアソン比,平均線膨張率の基本特性 はASMEより引用した.

応力-ひずみ関係は,想定ひずみ10%で過度な硬 化が出ないよう2直線近似した.また,いずれの物 性値も温度依存を考慮した.

弾塑性構成則としては,古典的移動硬化モデルを 用いた.

同材継手,異材継手それぞれ3ケースの解析を実施した.対応する熱伝導解析ケースは表2.3-1に示したケース1,ケース2,ケース3,ケース4,ケース 9ならびにケース10である.

熱伝導解析のそれぞれのパスに対して,熱弾塑性 解析を実施した.

3.2.2 残留応力解析結果

SUS × SUS同材継手について,8パス目入熱終了 後の残留応力分布(Mises相当応力)をケース1,ケー ス3ならびにケース9を比較して図3.2-1に示す.溶 接金属部の最高温度は図2.3-4に示すように3ケース 異なるものの,Mises応力はほぼ同じ結果となった.

図3.2-1 Mises残留応力分布図(同材継手)

SUS×Alloy600異材継手について,8パス目入熱 終了後の残留応力分布(Mises相当応力)をケース2, ケース4ならびにケース10を比較して図3.2-2に示 す.溶接金属部におけるMises応力は同材継手では 同程度であるが,異材継手については3ケースの最 大最小で約50MPaの差が見れれた.

(b) ケース4

図3.2-2 Mises残留応力分布図(異材継手)

4. 溶接部の組織観察と硬さ計測

4.1 組織観察

X線残留応力計測に影響を与える組織について観察した.

溶接から十分遠い部位の供試体の外面表層及びその内部(SUSは深さ3mm, Alloyは深さ3.5mm)の組 織写真を示す.

(a) 外表面近傍

(b) 内部

図4.1-1 SUS304管のミクロ組織

(a) 外表面近傍

(b) 内部

図4.1-2 Alloy 600管のミクロ組織

SUS304管は,外表面は若干粗粒であり,双晶が 認められ,その内部は組織上特に異常はなく粒径は 平均50µm程度であるのに対し,Alloy600管は外表 面の粗粒が顕著であり,100µmを超えるものがあ り,深さ500µm以上になると30µm以下程度にな り内部との差異はなかった.

本研究のX線測定では,電解研磨を50µm行い表 3.1-1の測定条件下で測定を行った.なお,両材料 の表層については粗粒でありながら,予備測定にお いて回折プロファイルは良好でありその半価幅は SUSでは1.2度,Alloyでは2.6度であり,単一の良好 なプロファイルであった.両材料とも 2 線図 は直線であったことから組織からうける影響は無い ものと判断した.なお,測定値の信頼区間はSUSも Alloyも30MPa程度であった.

4.2 硬さ測定

溶接部位近傍の残留応力値が大きかったので,材 料特性の目安となるビッカース硬さを測定により溶 接部位近傍の硬さを検討した.

SUS/SUS, Alloy/SUS溶接部位の外面表層(深さ 10µm)及び断面の深さ中央(SUSは深さ3mm, Alloyは深さ3.5mm)の硬さを測定した.押し込み 荷重は25gであり,測定点間隔は0.5mmピッチで測 定した.図4.2-1に硬さ測定結果を示す.

図4.2-1に硬さ測定結果を示す.同材継手の場合, 表層及び深さ中央の硬さ値はほぼ同じ値であり,溶 接部位近傍で値が大きくなった.これは,溶接に伴 う熱ひずみ履歴がもたらした硬化のためと思われ る.一方,溶金は母材と同じ値であった.

異材継手についてはSUS側の溶接近傍の硬さが同

材継手に比べ大きいこと,溶接から離れるにしたが って異材継手と同材継手のSUSの硬さに差がなくな ること,溶接条件は共に同じであることから,SUS の硬さに溶金の材料特性が影響を及ぼすと考えられ る.

また,異材継手Alloyの表層の硬さが深さ中央の 値に比べて約2倍大きかったことから,Alloyの溶 接近傍は製造時に生じた初期ひずみがあり,応力 ひずみ関係は表層と内部で異なると考えられる.

5. 残留応力シミュレーションの検討

5.1 温度履歴シミュレーション

形状モデル,配管内面の熱伝達係数,溶接金属と その近傍の発熱量の割合,等価発熱時間ならびに層 間温度を解析パラメータとして,表2.3-1に示す10 ケースの熱伝導解析を実施した.

同材継手のA点における5パス目~8パス目の温度 履歴について,解析と計測の比較をケース1,ケー ス3ならびにケース9に対して図5.1-1に示す.また, 異材継手のケース2,ケース4ならびにケース10に対 して図5.1-2に示す.

同材継手のケースについて,A点における各パス 時の最高温度の比較を図5.1-3に,C点における各パ ス時の最高温度の比較を図5.1-4に,溶接金属にお ける各パス時の最高温度の比較を図5.1-5に示す.

以上の結果に基づき,形状モデル,配管内面の熱 伝達係数,溶接金属とその近傍の発熱量の割合,等 価発熱時間ならびに層間温度の影響について考察す る.

(1) 形状モデルの影響

ケース1は溶接変形前の形状を,ケース3は溶接変 形後の形状をモデル化したケースである.ケース1 ではA点を溶接止端部より20mmの位置に,ケース3 では溶接止端部を予想した点から20mmの位置をA 点として定義しており,相対的にケース3の方が溶 接金属とA点の距離はケース1よりも近くなってい る.それぞれのモデルにおけるA点の定義を図5.1-6 に示す.

(c) ケース 9

図5.1-1 温度-時間変化(温度計測結果と解析の比較: 同材継手)

500

(c)ケース10

図5.1-5 溶接金属部における各パス時の最高温度の 比較

図5.1-3に示すA点におけるケース1とケース3の予 測を比較すると,第6パスまではケース1の方が高い 温度を示し,第7パス以降はケース3の方が高い温度 となっている.これは,ケース3においてA点と溶 接金属の距離が溶接変形のため第7パス以降近くな るためであろうと考えられる.しかしながら,ケー ス1とケース3の差は比較的小さく高々20数 となっ ている.同様の傾向は,図5.1-4のC点や図5.1-5の溶 接金属の温度でも差は少なく,熱伝導解析における 形状モデルの影響は小さいものと考えられる.

(2) 配管内面の熱伝達係数の影響

配管内面の熱伝達係数の影響は,ケース5とケース6の比較により検討することができる.ケース5は 配管内面に外面同様の10kcal/m²hr を与えた場合, ケース6は断熱とした場合である.図5.1-3のA点, 図5.1-5の溶接金属部ではケース5とケース6の差は 小さいが図5.1-4のC点ではケース6の方が10 程度 高い温度となっている.これは,溶接金属やA点が 最高温度になる時間が溶接直後であり,軸方向の熱 伝導が支配的となるのに対し,C点が最高温度に達 するまでの時間が比較的長く,内面への熱伝達の影 響が若干現れ,放熱のあるケース5の方が低い温度 になったものと考えられる.いずれにしても,軸方 向熱伝導が支配的であり,配管内面の熱伝達係数の 影響は小さいものと考えられる.

(3) 溶接金属とその近傍の発熱割合の影響

ケース6は溶接金属で100%発熱させた場合,ケー ス7は溶接金属で70%,その近傍で30%発熱させた 場合であり,総発熱量ならびに等価発熱時間は同じ としている.図5.1-3のA点ではケース7の方がケー ス6に比べ約50 近く高い温度が得られ,C点でも 約10 高い温度となっている.一方,溶接金属の温 度は100%発熱させたケース6の方が高くなってい る.すなわち,発熱量を近傍に割振ることによりA 点やC点の温度は高くなるが,溶接金属の温度が低 くなり,溶接金属の溶融温度よりも低い結果となっ た.

(4) 等価発熱時間の影響

ケース7の溶接金属の温度を高くするため,ケー

(予測モデル,拡大図)

ス8では溶接金属部の等価発熱時間のみを1秒とし, 近傍についてはケース7と同様10秒とした.最も顕 著な影響が現れたのは図5.1-5に示した溶接金属部 の温度であり,3000 近い温度となった.図5.1-3 のA点や図5.1-4のC点においてはケース8の方がケー ス7よりも若干高い温度を示すが,等価発熱時間の 影響は少ない.等価入熱時間の影響は,溶接金属部 における最高温度に大きく現れるものと考えられ る.

(5) 層間温度の影響

これまで見てきたケース1~ケース8までについ て,図5.1-3のA点における最高温度を計測値と比較 すると,ケース1もしくはケース3の結果が最も計測 結果に近く,発熱条件の振分けや等価発熱時間より も層間温度の影響が大きいようである.そこで,ケ ース8の条件に対し,層間温度をケース1,ケース3 と同様100 としてケース9の解析を実施した.図 5.1-3の中では最も高い予測温度となり,計測結果 とも良く一致している.しかしながら,図5.1-4のC 点では予測の中で最も高い温度を与える傾向はA点 と同様であるが,計測との比較ではケース9が離れ た予測となっている.これは,実際の溶接での層間 温度が室温でケース5~ケース8と整合しているため であると考えられる.それにもかかわらずA点にお いてケース9が最も計測に近い結果となった理由と して,次のように考えられる.

計測では,層間温度を25 としているものの,溶 接ビードが周上を移動し計測点に近づくにつれA点 の温度が上昇し,約100 に達した時点で計測点に 最も近い溶接金属が溶融したためであろうと考えら れる.これを軸対称でモデル化するためには,溶接 金属の発熱に先立ち近傍部の発熱が生じ,ある程度 温度が上昇した後に溶接金属が発熱する条件を探し 出す必要がある.しかしながら,パラメータが多く なり,簡易的な軸対称モデルを採用したメリットが 少なくなることから,このような3次元効果を考慮 するためには,軸対称でなく3次元モデルを用いる のが妥当であろうと考えられる.

(6) 異材継手と同材継手の比較

A点における5パス目~8パス目の温度履歴につい て,解析と計測の比較を同材継手に対して図5.1-1 に,異材継手に対して図5.1-2に示している.いず れの図においても形状モデルの差(同材継手ではケ ース1とケース3,異材継手ではケース2とケース4) や発熱量の振分け,等価発熱時間の影響(同材継手 ではケース3とケース9,異材継手ではケース4とケ ース10)を示しているが,同材継手と異材継手は同 様の傾向を示している.よって,上記で考察した同 材継手に対する各種のモデル化因子の影響は,異材 継手に対しても成立するものと考えられる.

5.2 残留応力シミュレーション

同材継手の軸方向に沿った残留応力の分布を図 5.2-1,図5.2-2に示す.図5.2-1は軸方向応力,図5.2-2は周方向応力で,図中比較のためにプロットして ある計測点は溶接部から離れた点における計測値を ゼロと仮定し,各計測値から遠方における計測値を 差し引いた値である.

異材継手の軸方向に沿った残留応力の分布を図5.2-3,図5.2-4に示す.

図5.2-3 管外面軸方向残留応力計測結果と解析の 比較(異材継手:軸方向)

図5.2-4 管外面軸方向残留応力計測結果と解析の 比較(異材継手:周方向)

以上の結果に基づき,形状モデルならびに温度分 布の影響について考察する.

(1) 形状モデルの影響

図5.2-1に示す同材継手の軸方向残留応力分布に おけるケース1とケース3の比較では,残留応力の分 布はほぼ同等であり,ケース3はケース1を若干外側 にずらした分布となっている.これは,図5.2-3の 異材継手の軸方向残留応力分布でも同様の傾向とな っている.

図5.2-2に示す同材継手の周方向残留応力分布に おけるケース1とケース3の比較では,ケース1の方 が全体的に引張側へシフトしたような分布となって いるが,図5.2-4の異材継手の周方向残留応力分布 ではケース2とケース4の差は少なくなっている.

周方向残留応力への形状モデルの影響は若干認め られるものの,支配的な軸方向残留応力への影響は 小さく,残留応力予測に及ぼす形状モデルの影響は 小さいものと考えられる.

(2) 温度履歴の影響

図5.2-1に示す同材継手の軸方向残留応力分布に おけるケース3とケース9の比較では,ケース9の方 が若干高目の残留応力分布を与え,またピークの位 置もケース9の方が外側にずれた分布となっている. これは,図5.2-3の異材継手の軸方向残留応力分布 でも同様の傾向となっている.ケース9では溶接金 属への等価入熱時間が1秒とケース3の10秒に比較し て短く,しかも溶接金属近傍への入熱もあることか ら,高温領域が広く,溶接金属の温度が高くなった ためであろうと考えられる.

図5.2-2に示す同材継手の周方向残留応力分布に おけるケース3とケース9の比較では,比較的良く似 た応力分布となっているがケース9の方が若干高目 の分布となっている.一方,図5.2-4の異材継手の 周方向残留応力分布ではケース3とケース9の差は SUS側で少なく,Alloy側で大きくなっている.周 方向応力については,軸方向応力に比べて複雑な傾 向を示しており,必ずしも一定の傾向が認めらない.

周方向残留応力への温度履歴の影響は溶接金属温 度を高く与えた方が高めになり,また近傍への入熱 をモデル化した場合にはピーク位置が外側にずれる ものの,本質的な影響は小さく,残留応力予測に及 ぼす温度履歴の影響も比較的小さいものと考えられ る.

(3) 3次元効果

計測結果と予測結果と比較すると,図5.2-1の同 材継手の軸方向残留応力分布では,よく一致してい るが,図5.2-2の周方向応力では計測では圧縮側の 応力が生じているのに対して,予測では圧縮側応力 が小さくなっている.また,図5.2-3,図5.2-4の異 材継手においても軸方向応力に比較して,周方向応 力の計測と予測の差が大きくなっている.

軸対称モデルと3次元モデルでは,周方向の温度 分布ならびに拘束が大きく異なり,周方向応力にお いて差異が生じたものと考えられる.さらに,今回 のモデル溶接では薄肉,小口径であったことから, 軸方向温度勾配が残留応力を支配しており,周方向 に膜応力が生じたことが分布を複雑にしている一因 となっているものと考えられる.

(4) 異材と同材の比較

計測と予測がよく一致している軸方向残留応力分 布について同材と異材を比較すると,図5.2-1の同 材継手ではよく一致しているが,図5.2-3の異材継 手ではSUS側で比較的よく一致しているが,Alloy 側では差異が生じている.この原因としては, Alloyの応力ーひずみ関係の違いによるものであろ うと考えられる.図4.2-1に示したようにAlloy溶接 部近傍の硬さ分布では,Alloy表面部に顕著な硬化 領域が存在し,この部分での降伏応力が解析で用いた応力-ひずみ関係よりも高いものと予測される.よって,同材に比べ異材の予測精度が悪いのは,異材特有の問題ではなく,用いた応力-ひずみ関係の精度によるものと考えられる.

(5) X線の有用性と評価精度

図5.2-1ならびに図5.2-3より軸方向については, ひずみゲージで得られた結果と比較してもX線測定 結果と解析結果は一致しており,X線による応力測 定手法は50MPa程度の有効であると思われる.図 5.2-2ならびに図5.2-4における周方向のシミュレー ション結果に注目すると解析ケースによる差が50~ 100MPaであるものの,前述した3次元効果のこと, ひずみゲージとX線の測定結果に大きな差がなかっ たことから,周方向についての評価の精度は100~ 150MPa程度,軸方向については50MPa以下である と思われる.

6. まとめと課題

本研究では,溶接継手の残留応力予測に関わる多 くの課題を段階的に解決するために,まずは,溶接 部位のうち配管もしくは管台溶接部位を対象とした 軸対称モデルを検討した.さらに異材配管の突き合 わせ溶接について,体系を単純化させたモデル試験 により,解析と測定により応力分布を推定できる評 価手法を開発した.同時に,測定技術のうち非破壊 的手法による測定限界についても検討した.

得られた成果を以下に示す.

- (1) 実際の溶接は,溶接金属だけの発熱のみならず 周囲に熱を与えている.解析においても溶接金 属とその近傍部に入熱量を割振ることにより, 溶接部近傍の温度応答が影響を受けることが分 かった.本研究の溶接モデルにおいては,溶接 金属とその近傍にそれぞれ70%と30%に割振る ことで同材ならびに異材継手ともに解析値と計 測値が良く一致した.
- (2) 軸対称モデル解析により各部の温度応答を精度 良く予測するには限界があり,各部の温度応答 を一致させるためには周方向の熱伝導と熱源の

移動を考慮する必要がある.これらをモデル化 するためには,3次元解析が必要となる.

- (3) 温度履歴の異なる結果を用い残留応力の予測を行ったが、いずれの温度履歴を用いても予測される残留応力分布には顕著な差異は生じなかった.また、形状モデルの影響も小さかったことも合わせると、残留応力の予測に及ぼす形状モデルの影響と温度履歴の影響は小さいものと考えられ、予測モデルの妥当性が確認できた。
- (4) 解析と計測の比較から軸方向応力は精度良く予 測できるが,周方向応力は合わない結果となっ た.これは,本研究では軸対称モデルを使用し ているため周方向の熱伝導等を考慮していない ことが原因と思われる.周方向応力を精度良く 予測するには3次元解析が必要になる.但し, 一般に溶接近傍に発生するき裂は溶接線方向 (周方向)であり,き裂の進展に支配する軸方 向応力の予測は軸対称モデルで可能である.
- (5) 残留応力計測では現状最も信頼性が高いと言われているひずみゲージ法による計測結果との比較を通して、X線法の有用性と評価精度が本供試継手においても確認できたとともに、実機の残留応力計測を非破壊的に実施できる目処を得た.
- (6)本研究においては材料構成モデルを古典的移動 硬化モデルと仮定した.溶接多層盛のように強 い履歴効果が起こる体系での残留応力予測に及 ぼす材料構成モデルの影響については今後の課 題として残されている.

7. 謝辞

本研究を行うに当たっては,川崎重工業(株)島川 貴司氏,平松秀基氏には全般にわたり多大なるご指 導,ご助言を賜りました.ここに心から感謝の意を 表します.

8. 文献

- (1)有本亨三,小林修二,川崎邦裕,坂井正彦,井 上達夫,「ステライト肉盛溶接における温度,応 力/変形,組織のコンピュータシミュレーション」, 第40回日本学術会議材料研究連合講演会, 1996.9
- (2)P. Dupas, P. Todeschini, B. Yrieix and F. Waeckel : "Evaluation of Residual Stress Measurement Techniques and Finite Element Simulations on Friction Weld Pipes", ASME PVP-373 1998
- (3)Y. Ueda,M. Saito, A. Okamoto and M.Kuzushima : "FEM Analysis of Welding Residual Stress in a Vessel Penetration",SMIRT 11 Vol.B ,August 1991
- (4)佐藤邦彦,向井喜彦,豊田政男,「溶接工学」, 理工学社,1979
- (5)日本材料学会編,「X線応力測定法標準(1997年 版)」